Robust Variable Selection and Estimation Based on Kernel Modal Regression
نویسندگان
چکیده
منابع مشابه
Robust Kernel-Based Regression
In this research, a robust optimization approach applied to support vector regression (SVR) is investigated. A novel kernel based-method is developed to address the problem of data uncertainty where each data point is inside a sphere. The model is called robust SVR. Computational results show that the resulting robust SVR model is better than traditional SVR in terms of robustness and generaliz...
متن کاملBayesian Approximate Kernel Regression with Variable Selection
Nonlinear kernel regression models are often used in statistics and machine learning due to greater accuracy than linear models. Variable selection for kernel regression models is a challenge partly because, unlike the linear regression setting, there is no clear concept of an effect size for regression coefficients. In this paper, we propose a novel framework that provides an analog of the eff...
متن کاملA robust least squares fuzzy regression model based on kernel function
In this paper, a new approach is presented to fit arobust fuzzy regression model based on some fuzzy quantities. Inthis approach, we first introduce a new distance between two fuzzynumbers using the kernel function, and then, based on the leastsquares method, the parameters of fuzzy regression model isestimated. The proposed approach has a suitable performance to<b...
متن کاملScalable kernel-based variable selection with sparsistency
Variable selection is central to high-dimensional data analysis, and various algorithms have been developed. Ideally, a variable selection algorithm shall be flexible, scalable, and with theoretical guarantee, yet most existing algorithms cannot attain these properties at the same time. In this article, a three-step variable selection algorithm is developed, involving kernel-based estimation of...
متن کاملNonparametric Kernel Estimation and Regression on Distributions
Low-dimensional embedding, manifold learning, clustering, classification, and anomaly detection are among the most important problems in machine learning. The existing methods usually consider the case when each instance has a fixed, finite-dimensional feature representation. We wish to expand the domain of consideration and let each instance correspond to a continuous probability distribution ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Entropy
سال: 2019
ISSN: 1099-4300
DOI: 10.3390/e21040403